Physical Science: Embedded Inquiry

Conceptual Strand

Understandings about scientific inquiry and the ability to conduct inquiry are essential for living in the 21st century.

Guiding Question

What tools, skills, knowledge, and dispositions are needed to conduct scientific inquiry?

Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3202.Inq.1 Recognize that science is a progressive endeavor that reevaluates and extends what is already accepted.	✓3202.Inq.1 Trace the historical development of a scientific principle or theory.	SPI 3202.Inq.1 Select a description or scenario that reevaluates and/or extends a scientific finding.
CLE 3202.Inq.2 Design and conduct scientific investigations to explore new phenomena, verify previous results, test how well a theory predicts,	✓3202.Inq.2 Conduct scientific investigations that include testable questions, verifiable hypotheses, and appropriate	SPI 3202.Inq.2 Analyze the components of a properly designed scientific investigation.
and compare opposing theories.	variables to explore new phenomena or verify the experimental results of others.	SPI 3202.Inq.3 Determine appropriate tools to gather precise and accurate data.
CLE 3202.Inq.3 Use appropriate tools and technology to collect precise and accurate data.	✓3202.Inq.3 Select appropriate tools and technology to collect precise and accurate	SPI 3202.Inq.4 Evaluate the accuracy and precision of data.
CLE 3202.Inq.4 Apply qualitative and quantitative measures to analyze data and draw conclusions that are free of bias.	quantitative and qualitative data. ✓ 3202.Inq.4 Determine if data supports or	SPI 3202.Inq.5 Defend a conclusion based on scientific evidence.
CLE 3202.Inq.5 Compare experimental	contradicts a hypothesis or conclusion.	SPI 3202.Inq.6 Determine why a conclusion
evidence and conclusions with those drawn by others about the same testable question.	✓3202.Inq.5 Compare or combine experimental evidence from two or more	is free of bias.
	investigations.	SPI 3202.Inq.7 Compare conclusions that

CLE 3202.Inq.6 Communicate and defend	(2202 Law C Danasian and Law and	offer different, but acceptable explanations
scientific findings.	✓3202.Inq.6 Recognize, analyze, and evaluate alternative explanations for the same set of observations.	for the same set of experimental data.
	✓3202.Inq.7 Analyze experimental results	
	and identify possible sources of experimental error.	
	✓3202.Inq.8 Formulate and revise scientific	
	explanations and models using logic and evidence.	

Physical Science: Embedded Technology & Engineering

Conceptual Strand

Society benefits when engineers apply scientific discoveries to design materials and processes that develop into enabling technologies.

Guiding Question

How do science concepts, engineering skills, and applications of technology improve the quality of life?

Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3202.T/E.1 Explore the impact of technology on social, political, and economic systems.	✓3202.T/E.1 Select appropriate tools to conduct a scientific inquiry.	SPI 3202.T/E.1 Distinguish among tools and procedures best suited to conduct a specified scientific inquiry.
CLE 3202.T/E.2 Differentiate among elements of the engineering design cycle: design	✓ 3202.T/E.2 Apply the engineering design process to construct a prototype that meets developmentally appropriate specifications.	SPI 3202.T/E.2 Evaluate a protocol to determine the degree to which an engineering

constraints, model building, testing, evaluating,		design process was successfully applied.
modifying, and retesting.	✓3202.T/E.3 Explore how the unintended	
	consequences of new technologies can impact	SPI 3202.T/E.3 Evaluate the overall benefit
CLE 3202.T/E.3 Explain the relationship	human and non-human communities.	to cost ratio of a new technology.
between the properties of a material and the use		
of the material in the application of a technology.	✓3202.T/E.4 Present research on current	SPI 3202.T/E.4 Use design principles to
	engineering technologies that contribute to	determine if a new technology will improve
CLE 3202.T/E.4 Describe the dynamic interplay	improvements in our daily lives.	the quality of life for an intended audience.
among science, technology, and engineering		
within living, earth-space, and physical systems.	✓3202.T/E.5 Design a series of multi-view	
	drawings that can be used by other students to	

Physical Science : Embedded Mathematics

construct an adaptive design and test its

Conceptual Strand

Physical science applies mathematics to investigate questions, solve problems, and communicate findings.

Guiding Question

What mathematical skills and understandings are needed to successfully investigate physical science?

effectiveness.

Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3202.Math.1 Understand the mathematical principles behind the science of physics.	✓ 3202.Math.1 Use a variety of notations appropriately (e.g. exponential, functional, square root).	SPI 3202.Math.1 Use real numbers to represent real-world applications (e.g., slope, rate of change, probability, and
CLE 3202.Math.2 Utilize appropriate		proportionality).
mathematical equations and processes to solve	✓3202.Math.2 Select and apply an	
basic physics problems.	appropriate method (e.g., mental	SPI 3202.Math.2 Perform operations on

mathematics, paper and pencil, or technology) for computing with real numbers, and evaluate the reasonableness of results.

- ✓3202.Math.3 Apply and interpret rates of change from graphical and numerical data.
- ✓ 3202.Math.4 Analyze graphs to describe the behavior of functions.
- ✓ 3202.Math.5 Interpret results of algebraic procedures.
- ✓ 3202.Math.6 Model real-world phenomena using functions and graphs.
- ✓ 3202.Math.7 Articulate and apply algebraic properties in symbolic manipulation.
- ✓ 3202.Math.8 Apply geometric properties, formulas, and relationships to solve realworld problems.
- ✓ 3202.Math.9 Make decisions about units, scales, and measurement tools that are appropriate for problem situations involving measurement.
- ✓3202.Math.10 Collect, represent, and describe linear and nonlinear data sets developed from the real world.
- **√3202.Math.11** Make predictions from a

algebraic expressions and informally justify the procedures chosen.

SPI 3202.Math.3 Interpret graphs that depict real-world phenomena.

SPI 3202.Math.4 Apply right triangle relationships including the Pythagorean Theorem and the distance formula.

SPI 3202.Math.5 Use concepts of length, area, and volume to estimate and solve realworld problems.

SPI 3202.Math.6 Demonstrate an understanding of rates and other derived and indirect measurements (e.g., velocity, miles per hour, revolutions per minute, cost per unit).

linear data set using a line of best fit.	
✓3202.Math.12 1nterpret a data set using appropriate measures of central tendency.	
✓3202.Math.13 Choose, construct, and analyze appropriate graphical representations for a data set.	

Physical Science : Standard 1 - Matter

Conceptual Strand 1

The composition and structure of matter is known, and it behaves according to principles that are generally understood.

Guiding Question 1

How does the structure of matter influence its physical and chemical behavior?

Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3202.1.1 Explore matter in terms of its	✓3202.1.1 Distinguish among solids, liquids,	SPI 3202.1.1 Distinguish among states of
physical and chemical properties.	gases, and plasmas.	matter in terms of energy, volume, shape,
		particle arrangement, and phase changes.
CLE 3202.1.2 Describe the structure and	✓3202.1.2 Describe and illustrate the physical	
arrangement of atomic particles.	differences among solids, liquids, and gases	SPI 3202.1.2 Name, measure, and describe
	in terms of their mass, volume, density, shape,	the physical properties of substances.
CLE 3202.1.3 Characterize and classify	and particle arrangement.	
elements based on their atomic structure.		SPI 3202.1.3 Compare different types of
	✓3202.1.3 Use appropriate units to measure	mixtures.
CLE 3202.1.4 Investigate chemical and physical	or calculate the mass and volume of	

changes.

CLE 3202.1.5 Evaluate pure substances and mixtures.

CLE 3202.1.6 Distinguish between common ionic and covalent compounds.

CLE 3202.1.7 Construct chemical formulas for common compounds.

CLE 3202.1.8 Investigate relationships among the pressure, temperature, and volume of gases and liquids.

CLE 3202.1.9 Apply the Laws of Conservation of Mass/Energy to balance chemical equations.

CLE 3202.1.10 Distinguish among acids, bases, and neutral substances.

substances.

✓3202.1.4 Calculate the density of substances or objects.

✓3202.1.5 Construct and interpret a density column

✓3202.1.6 Identify substances as homogeneous or heterogeneous mixtures.

✓3202.1.7 Construct an experiment to separate the components of a mixture.

✓3202.1.8 List the three major subatomic particles and distinguish among their location, charges, and relative masses.

✓3202.1.9 Distinguish between atomic number and atomic mass.

 \checkmark 3202.1.10 Define an isotope and describe the use of common isotopes.

✓3202.1.11 Identify the number of protons, neutrons, and electrons in an atom of an isotope based on its atomic number and atomic mass.

✓ 3202.1.12 Know the chemical symbols for the common elements.

 \checkmark 3202.1.13 Use the periodic table to

SPI 3202.1.4 Distinguish between examples of common elements and compounds.

SPI 3202.1.5 Compare the properties of metals, metalloids, and nonmetals.

SPI 3202.1.6 Determine the composition of an atom and the characteristics of its subatomic particles.

SPI 3202.1.7 Explain the interrelationship between pressure, temperature, and volume of gases.

SPI 3202.1.8 Distinguish between physical and chemical changes in matter.

SPI 3202.1.9 Use information about an element's position in the periodic table to determine the charge of its ions.

SPI 3202.1.10 Classify chemical bonds in a compound as ionic or covalent.

SPI 3202.1.11 Construct the chemical formula of a compound using the periodic table.

SPI 3202.1.12 Identify the reactants and products in a chemical equation, and balance equations using proper coefficients.

SPI 3202.1.13 Predict the products of

determine the number of protons, neutrons, and electrons in an isotope of an element.

✓3202.1.14 Use the periodic table to identify the characteristics and properties of metals, non-metals, and metalloids.

✓3202.1.15 Label a periodic table with oxidation numbers of main group elements, identify elements likely to form ions and use information to construct formulas for compounds.

✓3202.1.16 Classify a substance as an element or compound based on its chemical formula or symbol.

✓3202.1.17 Explain ionic and covalent bonding based on the oxidation numbers of the elements in a compound.

✓3202.1.18 Investigate physical and chemical changes in a laboratory setting.

✓3202.1.19 Balance simple chemical equations, identifying the reactants, products, and proper coefficients.

✓3202.1.20 Predict the products of common chemical reactions.

✓3202.1.21 Use models to represent chemical reactions as synthesis, decomposition, single-

common chemical reactions, given the reactants.

SPI 3202.1.14 Distinguish among synthesis, decomposition, single-replacement, double-replacement, and combustion reactions.

SPI 3202.1.15 Explain the Law of Conservation of Mass/Energy in terms of a balanced chemical equation.

SPI 3202.1.16 Distinguish between endothermic and exothermic reactions.

SPI 3202.1.17 Identify a substance as acidic, basic, or neutral based on its pH or response to an indicator or instrument

SPI 3202.1.18 Recognize the effect of acid rain on the environment.

replacement, and double-replacement.

✓3202.1.22 Describe synthesis, decomposition, single-replacement, and double-replacement reactions using equations.

✓3202.1.23 Describe how chemical symbols and balanced chemical equations illustrate the Law of Conservation of Mass/Energy.

✓3202.1.24 Observe and measure temperature changes to distinguish between endothermic and exothermic reactions.

✓3202.1.25 Conduct, analyze, and communicate the results of an experiment that demonstrates the relationship between pressure and volume of a gas.

✓3202.1.26 Conduct, analyze, and communicate the results of an experiment that demonstrates the relationship between temperature and volume of a gas.

✓3202.1.27 Apply indicators and instruments to classify a material as acidic, basic, or neutral.

✓3202.1.28 Conduct research on issues associated with acid rain.

Physical Science: Standard 2 - Energy

Conceptual Strand 2

Various forms of energy are constantly being transformed into other types without any net loss of energy from the system.

Guiding Question 2

What basic energy related ideas are essential for understanding the dependency of the natural and man-made worlds on energy?

Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3202.2.1 Investigate the properties and behaviors of mechanical and electromagnetic waves.	✓3202.2.1 Investigate energy transfer through waves and particles.	SPI 3202.2.1 Classify waves as transverse or longitudinal.
	✓3202.2.2 Demonstrate how waves are	SPI 3202.2.2 Distinguish between mechanical
CLE 3202.2.2 Explore and explain the nature of sound and light energy.	produced and transmitted.	and electromagnetic waves.
	✓3202.2.3 Investigate the characteristics of	SPI 3202.2.3 Distinguish between
CLE 3202.2.3 Examine the applications and effects of heat energy.	light energy and sound energy.	wavelength, frequency, and amplitude.
	✓3202.2.4 Compare and contrast the four	SPI 3202.2.4 Identify the boiling and freezing
CLE 3202.2.4 Probe the fundamental principles and applications of electricity.	types of wave interactions.	points of water using Celsius, Fahrenheit, or Kelvin scales.
	✓3202.2.5 Explore heat as a form of energy	
CLE 3202.2.5 Distinguish between nuclear fission and nuclear fusion.	that may be transferred between materials.	SPI 3202.2.5 Compare and contrast sound and light waves.
	✓3202.2.6 Identify the boiling and freezing	
CLE 3202.2.6 Investigate the Law of	points of water in the Celsius, Fahrenheit, and	SPI 3202.2.6 Distinguish among wave
Conservation of Energy.	Kelvin temperature scales.	reflection, refraction, diffraction, and

✓3202.2.7 Design and conduct an activity to	interference.
demonstrate the conservation of heat energy during temperature changes.	SPI 3202.2.7 Classify heat transfer as conduction, convection, or radiation.
✓ 3202.2.8 Investigate the relationships among kinetic, potential, and total energy within a closed system.	SPI 3202.2.8 Identify a scenario that illustrates the Law of Conservation of Energy.
✓3202.2.9 Solve problems related to voltage, resistance, and current in a series circuit.	SPI 3202.2.9 Solve application problems related to voltage, resistance, and current in a series circuit (V=IR).
✓3202.2.10 Investigate Ohm's law to design and build a simple circuit.	SPI 3202.2.10 Distinguish between nuclear fission and nuclear fusion.
✓3202.2.11 Research the importance of energy conservation.	SPI 3202.2.11 Solve problems regarding heat, mass, specific heat capacity, and temperature change (Q=mCΔT).
✓3202.2.12 Explore nuclear energy and its impact on science and society.	

Physical Science : Standard 3 - Motion

Conceptual Strand 3

Objects move in ways that can be observed, described, predicted, and measured.

Guiding Question 3

What causes objects to move differently under different circumstances?

Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3202.3.1 Investigate the relationships among speed, position, time, velocity, and acceleration.	✓3202.3.1 Demonstrate the relationship between speed and velocity.	SPI 3202.3.1 Distinguish between speed and velocity.
	✓3202.3.2 Create models that represent	SPI 3202.3.2 Relate inertia, force, or action-
CLE 3202.3.2 Investigate and apply Newton's three laws of motion.	Newton's three laws of motion.	reaction forces to Newton's three laws of motion.
	✓3202.3.3 Evaluate scenarios that illustrate	
CLE 3202.3.3 Examine the Law of Conservation of Momentum in real world situations.	Newton's three laws of motion.	SPI 3202.3.3 Distinguish among the concepts inherent in Newton's three laws of motion.
	✓3202.3.4 Investigate the Law of	
	Conservation of Momentum.	SPI 3202.3.4 Interpret a position-time graph for velocity or a velocity-time graph for
	✓3202.3.5 Research the historical development of the laws of motion.	acceleration.
	we veropine or the twite or motion.	SPI 3202.3.5 Solve application problems
	✓3202.3.6 Collect data to construct, analyze, and interpret graphs for experiments that involve distance, speed, velocity, and time.	related to velocity, acceleration, force, work, and power using appropriate units of measurement (v=d/t, a=Δv/t, F=ma, W=Fd, and P=W/t).
	✓3202.3.7 Solve problems related to velocity,	<i>'</i>
	acceleration, force, work, and power.	SPI 3202.3.6 Choose a correct representation of the Law of Conservation of Momentum.

Physical Science: Standard 4 – Forces In Nature

Conceptual Strand 4

Everything in the universe exerts a gravitational force on everything else; there is interplay between magnetic fields and electrical currents.

Guiding Question 4

What are the scientific principles that explain gravity and electromagnetism?

Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3202.4.1 Explore the difference between mass and weight.	✓ 3202.4.1 Demonstrate the effect of gravity on objects.	SPI 3202.4.1 Distinguish between mass and weight using SI units.
CLE 3202.4.2 Relate gravitational force to mass. CLE 3202.4.3 Demonstrate the relationships among work, power, and machines.	 ✓3202.4.2 Explore the difference between mass and weight. ✓3202.4.3 Design, demonstrate, and explain simple and compound machines. ✓3202.4.4 Gather and analyze data and solve problems related to mechanical advantage and efficiency of simple machines. 	SPI 3202.4.2 Identify the effects of gravitational force on a falling body or satellite. SPI 3202.4.3 Identify various types of simple machines. SPI 3202.4.4 Recognize the simple machines found in a compound machine. SPI 3202.4.5 Solve application problems related to mechanical advantage and the efficiency of simple machines, given appropriate equations (MA=FO/FI and Eff=WO/WI).